Main and interactive effects of warming, clipping, and doubled precipitation on soil CO<subscr>2</subscr> efflux in a grassland ecosystem
نویسندگان
چکیده
[1] We conducted two experiments, one long term with a 2 C increase (Experiment 1) and one short term with a 4.4 C increase (Experiment 2), to investigate main and interactive effects of warming, clipping, and doubled precipitation on soil CO2 efflux and its temperature sensitivity in a U.S. tallgrass prairie. On average, warming increased soil CO2 efflux by 13.0% (p < 0.01) in Experiment 1, by 22.9% (p < 0.0001) in Experiment 2, and by 26.6% (p < 0.0001) in the transient study of Experiment 2. Doubled precipitation resulted in an increase of 9.0% (p < 0.05) in soil CO2 efflux in Experiment 2. Yearly clipping did not significantly affect soil CO2 efflux (p = 0.66) in Experiment 1, while clipping decreased soil CO2 efflux by 16.1% (p < 0.05) in the transient study. Temperature sensitivity of soil CO2 efflux significantly decreased from an apparent Q10 value of 2.51 in unwarmed plots to 2.02 in warmed plots without extra precipitation and from 2.57 to 2.23 with doubled precipitation in Experiment 2. No significant interactive effects among the experimental factors were statistically found on soil CO2 efflux or their temperature sensitivities except for the warming clipping interaction (p < 0.05) in the transient study. Our observed minor interactive effects relative to main ones suggest that results from single-factor experiments are useful in informing us of potential responses of soil CO2 efflux to multifactor global change, at least in our ecosystem.
منابع مشابه
Net primary productivity and rain-use efficiency as affected by warming, altered precipitation, and clipping in a mixed-grass prairie.
Grassland productivity in response to climate change and land use is a global concern. In order to explore the effects of climate change and land use on net primary productivity (NPP), NPP partitioning [fBNPP , defined as the fraction of belowground NPP (BNPP) to NPP], and rain-use efficiency (RUE) of NPP, we conducted a field experiment with warming (+3 °C), altered precipitation (double and h...
متن کاملSoil hydrological properties regulate grassland ecosystem responses to multifactor global change: A modeling analysis
[1] We conducted a modeling study to evaluate how soil hydrological properties regulate water and carbon dynamics of grassland ecosystems in response to multifactor global change. We first calibrated a process-based terrestrial ecosystem (TECO) model against data from two experiments with warming and clipping or doubled precipitation in Great Plains. The calibrated model was used to simulate re...
متن کاملUnchanged carbon balance driven by equivalent responses of production and respiration to climate change in a mixed-grass prairie.
Responses of grassland carbon (C) cycling to climate change and land use remain a major uncertainty in model prediction of future climate. To explore the impacts of global change on ecosystem C fluxes and the consequent changes in C storage, we have conducted a field experiment with warming (+3 °C), altered precipitation (doubled and halved), and annual clipping at the end of growing seasons in...
متن کاملRelative effects of precipitation variability and warming on tallgrass prairie ecosystem function
Precipitation and temperature drive many aspects of terrestrial ecosystem function. Climate change scenarios predict increasing precipitation variability and temperature, and long term experiments are required to evaluate the ecosystem consequences of interannual climate variation, increased growing season (intra-annual) rainfall variability, and warming. We present results from an experiment a...
متن کاملGlobal pattern of temperature sensitivity of soil heterotrophic respiration (Q<subscr>10</subscr>) and its implications for carbon-climate feedback
[1] Temperature sensitivity of soil respiration (Q10) is an important parameter in modeling effects of global warming on ecosystem carbon release. Experimental studies of soil respiration have ubiquitously indicated that Q10 has high spatial heterogeneity. However, most biogeochemical models still use a globally constant Q10 in projecting future climate change, partly because no spatial pattern...
متن کامل